34 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI
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There have been many studies of the stability of plastically deform-
able media. Specific problems are solved in [1, 2], etc. In these
studies it has been assumed that the process of loss of stability can be
investigated in the quasi-static formulation, i.e,, an attempt is made
to find the values of the external loads at which, together with the
unperturbed equilibrium mode, the adjacent pertirbed equilibrium
state is possible, the transition from the unperturbed to the adja-
cent pertutbed state being assumed to take place without unload-
ing.

The results thus obtained are in agreement with general experimental
concepts.

Below it is shown that the use of the model of a viscoelastic-plastic
hardening body leads toa process of stability loss in which the material

is plastically deformed, which justifies the use of the tangent-modulus
formulation.

It is established that if the external loads are conservative, then for
viscoelastic-plastic bodies loss of stability will occur in the static in-
stability mode,

The stability of systems under creep conditions was previously exam-
ined in [3-8].

1. Let us consider the viscoelastic-plastic body
whose mechanical model is shown in Fig. 1. The rela-
tion between the states of strain and stress in this
body are determined in conformity with [9].

The body remains elastic as long as

537845 < k*? (0), Sij = O35 — 1/35kk6i5 s ( 1 -1)
where ‘
Gij = ey "dy -+ 2pe;® (1.2)
2
If Sijsij = k“(n), then
e = ei° + &, %= e;Pe;’ - (1.3)

In this case the elastic strains ei-e are related to
the stresses by Hooke's law (1.2). ”1Jhe plastic strain
rates are

i (555 oegP) (s35— ceyP) < K2 (%),

e® = P (si; — cey” — e;p),

e? =0,
ij .

(1.4)

if (515 — e P — M) (15— o5 —meif) = k2 ().
The total strains are related with the displacements
by the Cauchy relations
e = /a (ui,; 4+ j,4)-
To relations (1.2)—(1.5) it is necessary to add the
equilibrium equations [10]
I8 @u + v, 1)+ X =0 (1.6)

Let the surface forces py be given on the part S of
the surface of an elastic-plastic body and the displace-

ments u; on the part Sy, the quantities p, and"ui tem;ling

. . ) i
to or assuming the time-independent values p; and uj
with increase in time. ’

Let the solution of the system of equations (1.1)—(1.6)
with these boundary conditions be 0j(x, t), €j(xk, t),
eijP°(xk, t), uj°(xk, t). We assumethatastime increases
these solutions tend to G‘ij°(xk)’ ei]-°(xk), eijp"(xk),
llia(Xk).

In what follows we will investigate the stability of
this process with respect to small perturbations of the
boundary conditions, mass forces, and deviations of
the configuration of the body from the given geometric
dimensions.

We find the solution for the perturbed motion in
the form:

6= 04T 1) + 01"y ey =, (3, 1) + &7

e = ef (@, 1) + e wi = ul (zy, 1)+t (1.7)
It is assumed that the stability of motion can be
judged from the linearized system of equations which

we obtain by assuming that the components with a plus
sign are small and retaining only linear terms of the
expansion.

In the plastic region

L= et D+
& = € -~ e

t o= . +
o = hett &y -+ 2pest

(5 — e ) 5" — ey —ne) =

== 2k (%o) Ok/O% |y, €5 €PH,

ij 1]

o + 1+ o
ept = ¥ (5,0 — e —Meff) +

+ V° (45" — ceBr —me*)- (1.8)
For eij+ we obtain
et =2 (u; % +u;%)- (1.9)

The linearized equilibrium equations and boundary
conditions on Sy have the form [10]:

S5+ (Osu f),i + Xt —oupt =0,

(1.10)

304 Q0 4, — .t
Gij n]+67k ui,kn]—pz .

Relations (1.10) were obtained for an elastic body,
but since they have a geometric significance unrelated
to the properties of the body they can also be used for
inelastic bodies.

Eliminating the quantities e;;¢+ and ejjP* from re-
lations (1,8), (1.9), we obtain

Wty 38 (53 i) — o =
=° [2poy* — 3w (3N + 2p) 1y 38 —
— ek, 10 — cp (54, £) 4 esyt — Mluk:;(‘)i,- —_

—pn (@5 -+ uh) + 0o F) A+ B [y, o8
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. o <
Sl (8, —ceh® —

+u (gt ) —
— MeE%) (s::° — cely — me”), (1.11)
[2po;* —*/ap (3N + 2p) u, 18y —
— cha, 18y — ep (% 4 uy) oo —
— hnh s —wn (7% +ut) +
+ Mo (55 — cefP—mee) =
=kiel [huy 30;; + w (u, 5+ u%) — o5,
Fey = 2 (o) 0k/0% |ums, - (1.12)

The unperturbed equilibrium will be stable or un-
stable depending on the behavior of the perturbations
as t increases without bound.

2. We find the solution of Egs. (1.10)—(1.12) in the
form:

" (@, 1) = fo (8) Qin (),
G55 (Tny 1) = P (2) Sijom (23)- (2.1)

Here, fn(t) and ¢, (t) are certain functions of time,
(pin(xk) are the eigenvectors of the elastic problem,
and

Gism (Th) = 7\.(pm,,, 2055 - 2p (@im, ; + Pim, 1)- (2.2)

We rewrite the equation of Galerkin's method [10]
in the form:

S[Gi;’,;" + X" —puyt] @y dV — S Ojpl; T Qim, AV —
v v

—{§ @ —pomds =0
SF

(m=1,2,3,...,...). (2.3)

Substituting expression (2.1) into (2.3) we obtain the
system of equations

dzfm/dt2 + bmnfn - amnq)n =0
(m=1,2,3,...,..., (2.4)

On = SS G;jn?s; Pim as — S Gijn,j(Pidet
Sg v

bn = S Spf (Pin) QimdS -+ S X" (Pin) Pim AV —
Sg v

- S dj}?(pin,kcpim, 1dV (2.5)
\4

Substituting (2.1) into (1.11) after multiplying by
0ijn and integrating over the volume V, we obtain

d, AP
Amn_‘];tl + anfm_ Cmn"jd‘%_ + Dmn'q)m =0
(n=1,2,3,...,...), (2.6)

Amn = S [‘ﬂ"q)}rm, k‘sij + ap ((pim,i + (ij,‘i) -
v

— K200 h57 (Mo, 1050 + B (Quny 1+ @pe, 1)) 63,4V,

By = S [01@im, 10355 + 32 (Pim, i + Pim, 1)) G1jdV,
v

o
fi? = (51— cely —nely),

Com = S 1865im+ # 26 mfufii"] 61024V,

v
'Dmn = S aaci]-mcijndV, (2.7}
v
a =142, a = 29° [*ap (Bh + 2p) + ch],
gy = 2epy°, asz = 20° (2p —c). {2.8)

Relation {1.12) reduces to the form
Andfn/dt + ann— Cndﬂ:)n/dt - Dn'lpn =0
(n=1,2,3,...), (2.9}

Ay = Sfijo (AN Par i O35 + W0 (@i, + Py ad] AV,
v

o 2(3% 4 2p) .
B, = fi' p Pin, ?c&i' T
n § [ j 3 j

A+ (cfii® A Fael”) (MPpn, 103 + 10 (@i, s + q’jn,i})} av,
Co=n Sfif%de,
vV

Dy = { @it c o+ ) (1 + %) G35V
v

(2.10)

The system of linear differential equations (2.4),
(2.8), and (2.9) can be reduced to the normal form

dzjdt =D () z,

where z = (f,f;, ceos S e Pp o .,zpm, eeed
045835 o0y 8y, + . .) 18 a vector and D some operator.

The system of equations (2.4), (2.6), (2.9) can be represented in
the form Adz/dt + Bz = 0, where A and B are infinite matrices

(2.11)

A C3 0 Bi; Dy 0
A=\ I 0 0o}, B={|l 0 0 — 7l (2.12)
_0 0 I bi.’i a,-,- 0

Here, Aij’ Bij' Cl]' Dij’ aij’ and bij (i;j= 1,2,3, ... )ake iﬂ:_
finite matrices whose coefficients are determined by (2.5), (2.7),
and (2.9), 1 is the infinite identity matrix, and 0 the infinite null
matrix.

Let R be some operator:

0 I 0
R = Bij_l By 4 0
0 0 I

We assume that the matrix By; is invertible. The operator R is the

inverse of mamix A, since AR =RA =1, Then equation Adz/dt + Bz =0
can be written in the form
dz/dt + A"1Bz = 0.

Thus, system (2.4), (2.6), (2.9) reduces to thé nor-
mal form (2.11), where

0 0 I
D= —|Bj'Cy; B3'D, Bg‘AiiJ.

ai]- bl] Q
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3. Let us consider Eq. (2.11). It is assumed that
ID ¢ p) —C@) || >0 as t >oo. (3.1)

The differential equation (2.11) goes over into the
differential equation with constant coefficients

dzjdt = C () z . (3.2)

Let the spectrum of the operator C lie in the left half-plane. Then
for the operator et we have the estimate ([11], p. 20)

flet < Ne™  (v>0). (3.3)

i VTogether with Egs. (2.11) and (3.2), we consider the system of
differential equations

dzfdt = [D (¢, B)+ 0113, dz/dt=[CB)+&llz. (3.4)

Here, & is so small that the spectrum of the operator C + 81 lies in
the left half-plane, and for the operator e(CH81) there is an estimate

—
L V|
Fig. 1
of type (3.3). Then there exists a bounded quadratic form
oo
W (z) = S (G 7 LCHDE 1y gz, (3.5)
0
In fact,
[=e] oo
W () = (D izpar < Myjepp (et ar < oo,
0 0
i.e.,
[oed
W 1< (3 e a2 fp = Ml e, (3.6)
o

where Ny and N’ are certain positive constants.
In view of system (3.4) the total derivative of this function W(z)
will be

T () [C+ 8z =—] 2. 3.1

And this, in view of Lyapunov's general theorem of stability
[12, 131, compels us to conclude that the function W given by Eq. (3.5)
is a Lyapunov function in the sense of the stationary equation (3.4),

Z

2

r 3

a fe—

21

Fig. 2

We will find the total derivative with respect to t of the function
W. In view of system (3.4),

T'(z)[D(t, B)+8I]z=
[=o]
-9 S (e(C3IrS, (CH8D Sy (1 Bya) ds +
0
C
+26 S (eOHBDs 5 (B s 4y g (3.8)
[}
Since
(o]
2 S (CHDE 5 LOHBDE gy gy
1)

=pefp—2 { (0D 5, OO @) cyat,
0

we rewrite (3.8) in the form
T(5)[D(, B)+811z=—2z]F-+2 S (ACHBD 8 5.
o

3.9
OB [ D1, B) — C (B)] z) ds. ©9)

Since W is a guadratic form with constant coefficients, there is a
nonzero number g(B) such that when the inequality

(¢, B) —C B e

is satisfied the right side of the last relation is a positive definite
guadratic form of the variable z,

Since D(t, 8) tends to the limit C(B) as t increases without bound,
for any €, however small, there is a T such that at t = T the absolute
value of the differences D(t, B) — C(B) will be smaller than ¢ and,
consequently, for all values of t exceeding T the derivative
T(z)[D(t, B) + 81}z will be a negative function.

Thus, we have the following theorem. If the spec~
trum of matrix C lies in the left half-plane, the un-
perturbed motion of the nonstationary system is
asymptotically stable in the Lyapunov sense.

Hence we may conclude that as t — < the solutions
of Egs. (2.11) behave approximately in the same way
as the solutions of Egs. (2.3).

!
C=0.25
c-—a5o)

£=7.04,

a2z /

a8

Po

04

g 0z 04 0.6
Fig. 3

4. The theorem proved makes it possible to sim-
plify our investigation of the behavior of the solution of
system of equations (1.10)—(1.12).

If in the coefficients of Egs. (1.10)—(1.12) we let
t tend to infinity, then in the limit we obtain a system
of equations with stationary coefficients.

Finding the solution of the limiting system of equa-
tions in the form (2.1) by the method developed in §2,
we reduce the solution of this system to the system of
ordinary differential equations

dzjdt = C() z, (4.1)

the operators D(t,3) in (2.11) and C(g8) in (4.1) possess-
ing the properties (3.1). Thus, the stability of the solu-
tion of system (1.10)—(1.12) can be investigated with
respect to the limiting system of equations on the as-
sumption that series (2.1) converge.

Letting the time t in (1.10)—(1.12) go to infinity, we
obtain the limiting system of equations in the form

6%+ (ontuy 3) 5+ Xt —puit =0,
Ayt B+ p (g A ug ) — oy = E [, 8+
+ By B — o] (8 — cef”) (s — cely).

{n o) o, — [¥sn (3N -+ 2p) +



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 37

+ M uy 10— op (5 + 1Y) —
— M, 18 — (% g ) e (si° — celd) =
= ke [hny, 18+ 1 (u; %+ w; %) — o'l 4.2)
with boundary conditions at the surface Sy
CERCE SCINC TN TR A {(4.3)

In investigating the boundary value problem (4.3)

for Egs. (4.2) we will use the method described in [10].

The solution of these equations is found in the form
it (2, 1) = Uj(zy) el
S’ (71, £) = o (xy) €t (4.4)
Substituting (4.4) into (4.2), we obtain
35,1+ (63°Us,x), s + X (Uy; 0) + pol; =0,
ity + 65 Us,ing = py (Uy; o),
AU o, m0ii + 0 (Usi + U i) — 635 = K2 [AU 5 o8y +
+ B (Us, 1+ Urs) — ol (57— cef)(si? —eel),  (4.5)

(3R -2
{@n et omoy — [EE )

BT ch SM]J Uy i —
— (el ) (U 5+ U, 0 (s — cep?) =
= ke M, 1 O + 0w (Ui, 4 Uji) — o], s =i0. (4.6)
From (4.6) we can obtain

655 (@) = AU, 605 + WUy 5+ Uy 5) +

2u2 [2/3(/’;{’ #O1m — (Ul, mT Um,l)] (s‘lmo —cebe

— o o =]
E2[20 o s+ kik 72, 20 (s, —ce, P0)]

X (83" — cely ). (4.7)

Equations (4.7) may be treated as the relation be-
tween the states of stress and strain in an anisotropic
elastic body with complex modulus of elasticity.

By repeating the arguments of [10] it can be shown
that if the external forces possess a potential, loss of
stability can occur only in the static instability mode,
since in this case the corresponding problem is self-
adjoint.

5. As an example we will investigate the stability of the process
of deformation of a rectangular infinite strip compressed by a uniform
pressure p applied on two opposite sides (Fig. 2).

We will consider the case of plane strain, i.e., loss of stability
occurs in the plane x;0x;. Neglecting, for simplicity, compressibility
and assuming that k = const, we write relation (4,7) in the form:
U )

Sy =68 = w (U ;

2 Yaw .
~ Fnig 20 <U2,2 ~~U1,1) (87— Ce’lipo)’ G =1 Sy - (5.1)

The state of stress in the strip up to the loss of stability is deter-

mined by the expressions

o11° = — p, 632° =0, o12° =0,

™ = — o = (Vi- p)/ 2, e =0. (5.2)

The equilibrium equations, determined from (4.5) using (5.2),

are written as follows:

S111F 0122 —PUy1n =0,
G123 + Og9,9 — PU3 g0 = 0. (6.3)
The boundary conditions have the form
G =0, Op3 =0 at my=1, xg=+m. (5.4)
Using equilibrium equations (5.3), the stress-strain relation (5.1),

and the incompressibility condition, we obtain the starting system of
equations

.(2% + po— 1) Vine— Usgee— (1 + po} U +

+ (1 — 2yy) Ugaee= 0

Ui+ Usp=0, p/p= p,

8/(2 + c) = yo - (5.5)

C/p. = Loy
The solution of Egs. (5.5) should be found in the form

U1 = fi (x2) sin axy, Ug = fo(z) cOS Oy . (5.6)

After substituting (5.8) in (5.5) we obtain an equation for the func-
tion £ (xy):

d4faldest— a® (2 — po — Vo) Bfaldx) +- 2t (4 — po) f=0. (5.1)

Equation (5.7} is easily integrated. The function fy(x,) found from
(5.7} is a sum of even and odd functions.
Confining our attention to the lateral buckling of a plate, we obtain

fa (z2) = A; ch wyzy - A3 ch wezs . (5.8)
Here, A; are arbitrary constants,
w1 = {02 {2 — o — po) + [(po + y0)2 — &olz BV,
we = {72 {2 — yo — po) — [(po + ¥0)* — bvolt/a B2 .

After determining fi(x,) and fy(x,) we find Uy and U,. Using rela-
tions (5.1) and equilibrium equations (5.3), we obtain the stress compo-
nents of the perturbed state, whose substitution into the boundary con-
ditions (5.4) at the free surfaceleads to the consideration of a system of
algebraic linear homogeneous equations in the constants of integration,

In the event of loss of stability this system has a nontrivial solution,
i.e., its determinant is equal to zero. Hence for determining the cri-
tical pressure we obtain the equation

wa (@ — we?) [y — a2 (1 — po)]
wy (02 — wi?) {we? — a2 (1 — pp)]

= th {mwy) cth (mwi). (5.9)

In the same way (only the root indices of the trigonometric coef-
ficients change) we can obtain an equation for determining the criti-
cal load, assuming bilateral bulging in compression or necking in
tension.

The boundary conditions will be satisfied if o« =nm/l (ais the
number of half-waves). For thin strips Eq. (5.9) can be simplified,
since it is possible to use a power series expansion of the frigonomet-
ric coefficient, limited, in view of the smallness of the thickness as
compared with the length, to the second order:

Po® — [(1/a2m®) — o] po? -+ 1o (2 -F 02m270) po — (wmpo)r = 0. (5.10)

Figure 3 is a graph of the critical load versus (ocm)2 = § for Eq.
(5.10).
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